All I Ever Needed to Know About Programming

I Learned From Re-writing Classic Arcade Games

Katrin Becker
J. R. Parker
Overview

- The Challenge of reaching students.
- What we usually do in 1st year.
- Games and Students
- Effective Learning
- Games and Pedagogy
- Why Arcade Games
- What can we teach with games?
- Dialing Down & Ramping Up
The Challenge

- Enrollments in CS are down.
- Demand for CS professionals is changing.

 ◆ Need More breadth (applications, media).
 ◆ Outsourcing.

- How to fill demand for programmers?
- How to attract CS Majors?
The Usual

- Typical progression:
 - Uniform, incremental steps
 - Mathematical sequencing of content
 - Teach programming step-wise,
 - From little to big;
 - From simple (sorting lists)...to complex (sorting big lists)
 - From boring to.... Still boring
Games and Students

- CS students are gamers
- Games got many students interested in CS
- Students get games
 - Usually better than “widgets”
Effective learning happens when...

- Students care about the problems they need to solve
- Students understand the problems they need to solve
- We take prior learning into account (start from where the students are)
Are Games all this?

- Students care about games
- Students understand how the games are supposed to work
- Prior knowledge for students includes games literacy.
Games and Pedagogy

- Gameplay is tied to programming:
 - Complex gameplay == complex (and more) algorithms

- Games are highly visual:
 - On-screen behavior maps onto algorithms in-program
 - We can watch the algorithms as they execute

- Program testing techniques are understood and accepted
 - Game cheats
 - Try it and see…. (game attitude)
But…

Games are frivolous…
- Our goal is to implement the game, not just play it.

Games are graphics intensive…
- This doesn’t need to be (enter, the arcade).

Games are primarily event-driven, and that’s only one aspect of programming…
- Most games can be modified to be turn-based.
What’s So Special About Arcade Games?

1. Familiarity
 - Build something they have actually used (How many freshman have managed enough employees to require a program to keep track of them?)

Go from experiencing the magic.. to being the magician.
What’s So Special About Arcade Games?

2. Age

- Built when computers were limited & effects were crude.
- Program complexity was low
- Graphics were simple
- Audio was insignificant (almost)
What’s So Special About Arcade Games?

3. Lots of implementations exist.
 - Working examples are useful when writing a new program.
 - Is this a liability? What about cheating?
 - Pick a 1st year programming problem for which no solution exists. Anywhere.
 - Just try.
So Many Concepts
So Many Games

Action Shooters
- Collision detection
- Distance calculations

Asteroids!
Missile Command
Defender
So Many Concepts
So Many Games

Maze Puzzles

- Path finding
- Chasing (tracking)
- 2D

Pac-Man
Ms. Pac-Man
Centipede
So Many Concepts
So Many Games

Puzzles

- 2D geometry
- Packing algorithms
- Win-state detection
- Condition checking

Tetris
Q*Bert
So Many Concepts
So Many Games

Bouncing

- Real-time in a simple environment
- Collision detection
- Simple physics

Blocks
Breakout!
Pong
So Many Concepts
So Many Games

Side Scrollers / Level Games

- Physics
- Inventory & asset management
- AI

Mario Bros.
Donkey Kong
Pitfall
Joust

FuturePlay 2005
So Many Concepts
So Many Games

Racing & Driving

- Physics
- AI
- Collision Detection
- Graphics
- User interfaces
- Audio
-

Indy 500
Street Racer
So Many Concepts
So Many Games

Text Based
- Parsing
- AI

Zork

Up a Tree
Score: 25/21

Forest Path
>look
Forest Path
This is a path winding through a dimly lit forest. The path heads north-south here. One particularly large tree with some low branches stands at the edge of the path.

>climb tree
Up a Tree
You are about 10 feet above the ground nestled among some large branches. The nearest branch above you is above your reach. Beside you on the branch is a small bird's nest. In the bird's nest is a large egg encrusted with precious jewels, apparently scavenged by a childless songbird. The egg is covered with fine gold inlay, and ornamented in lapis lazuli and mother-of-pearl. Unlike most eggs, this one is hinged and closed with a delicate looking clasp. The egg appears extremely fragile.
Adding and Removing Complexity

Dialing Down:
- Can simplify gameplay without losing appeal
- Can do ASCII games
- Provide plug-ins for tougher bits
- Staged (i.e. C-solution does this; B-solution does this; and A-solution does that)

Ramping Up:
- Can add to even simple games (3D, real-time, full-color, sound, …)
- Concentrate on one aspect – increase quality / complexity for greater challenge (graphics for Donkey Kong; physics in driving game; parsing in Zork)
Summary

Classic Arcade Games are ideal:

- Complexity at a level novices can master.
- “Special Effects” (graphics, sound, etc.) demands are modest without having to change the original game.
- They are examples of programs with which most students are familiar.
- Many working examples exist and are freely available.
- Complexity and challenge can be easily adjusted to meet requirements for novices and experienced programmers alike.
Thanks.
Image credits

- Attaxx: http://www.pressibus.org/ataxx/gen/gbinintro.html
- Breakout: http://freespace.virgin.net/james.handlon/earlygamingmemoriespart2.htm
- Q*Bert: http://www.gamespot.com
- Lunar Lander: http://gnm5.tripod.com/Lunar_lander.htm
- Joust: http://www.glitchnyc.com/cgi-bin/blosxom.cgi/technology/games/index.phblox
- Street Racer: http://www.vgmuseum.com/pics5/streetracer.html

- VideoGameCritic.net (multiple images, especially Atari 2600 Games, and Intellivision)
- GameSpot
- MobyGames